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Abstract: A stereoselective synthesis of brassinolide and dolicholide, which involves construction 
of the side chain enantiomers by a highly stereoselective aldol reaction of aldehyde 5 with the 
anion of α-silyloxy ketone 6 is described.  
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Brassinolide 1 as well as its analogues 2, 3, 4 (Figure 1) are a new type of promoting 
material for plant growth1, 2.  Owing to their novel structural features and their 
remarkable physiological activity, much effort has been expanded on the development of 
methods for their syntheses and biosynthesis 3.  So far the work on the steroidal nuclei 
of 1 is rather successful. The main differences of various synthetic routes of 1 are the 
syntheses of the side chains3.  With our previous findings4, we report here a new 
method for constructing the side chain of 1 and related compounds, which is 
stereoselective and produces high yields. 

 
Figure 1 

 

R= H, brassinolide 1
R= CH3, homobrassinolide 2

R= H, dolicholide 3
R= CH3, homodolicholide 4
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On the basis of the structure characteristic of brassinolide 1 and dolicholide 3, we 
synthesized 12 and 11, which were the side chain enantiomers of 1 and 3 using aldehyde 
5 as starting material.  Aldehyde 5 was prepared in two steps from ethyl (S)-(-)-lactate 
by p-methoxybenzylation 5 and the DIBAL-H reduction.  This aldehyde was then used 
in an aldol reaction with the lithium enolate of α-silyloxy ketone 64.  The anion was 
generated in THF from the α-silyloxy ketone 6 and LDA and was cooled to �78 °C 
before addition of the aldehyde.  The temperature was maintained for 1.5 h and was 
allowed to warm up to 0°C, then the reaction was quenched with dilute hydrochloric acid, 
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the 3S, 4R intermediate 76 was obtained in 83% yield (Scheme 1).  When the aldol 
reaction mixture was maintained below �78 °C for 3 h and the reaction was quenched 
with dilute hydrochloric acid at this temperature under these conditions (kinetic), the 22S, 
23S intermediate 136 was obtained in 75% yield (Scheme 2).  Mukaiyama-type aldol 
reaction7 of silyl enol ethers 158 and aldehyde 5 turned out to be more efficient than the 
direct reaction of the lithium enolate of 6.  Reaction of 15a and aldehyde 5 mediated by 
TiCl4 afforded aldol products with silylated aldol products. Without isolation of the 
products, treatment of the product mixture with n-Bu4NF afforded desilylated aldol 
products, under these conditions, the 3S, 4S intermediate 146 was obtained in 63% yield 
(Scheme 3).  
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Reagents and conditions: a) LDA, THF, �78 °C -0 °C, 1.5 h, 83%; b) TBAF, THF, r. t., 5 min, 92%; 
c) (CH3)2C(OCH3)2, DMF, p-TsOH, 2 h, 84%; d) K2CO3, MeOH, reflux, 0.5 h, 93%; e) Ph3PCH3I, 
n-BuLi, THF, r. t., 8 h, 85%; f) PtO2, MeOH, H2, r. t., 6 h, 98% or 10% Pd/C, MeOH, r. t., 0.5 h, 
98%.  
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Reagents and conditions: a) LDA, THF, �78 °C, 3 h, 75%; b) TBAF, THF, r. t., 5 min, 90%; c) 
(CH3)2C(OCH3)2, DMF, p-TsOH, 2 h, 88%. 
 

Aldol 7 was desilylated by treatment with TBAF in THF and the diol 8 was 
transformed into erythro acetonide 9.  Treatment of 9 with potassium carbonate9 in 
methanol under reflux for 0.5 h affected the epimerization of C-4 center of the acetonide 
to the desired threo acetonide 109, 10, which showed identical spectral data with that 
obtained from the diol 14.  After Witting olefination, the product 11 was hydrogenated 
by treating with PtO2 in the MeOH to give an 85: 15 (1H NMR) mixture of isomers of the 
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desired product 1211 in virtually quantitative yield.  The coupling constant for H-4 to 
H-5 (J = 3.2 Hz) in the major product was smaller than that for H-4 to H-5 (J = 6.8 Hz) 
in the minor product therefore the stereochemistry at C-5 was tentatively assigned as 5S.  
The observed stereochemistry in favor of the 5S isomer may be as a result of the direc- 
ting influence of the chiral acetonide group at C-3 and C-4 on the addition of hydrogen. 

Scheme 3 
 
 
 
 
 

 
 
Reagents and conditions: a) NaN(SiMe3)2 (1.1 equiv), -78 °C, 30 min, then TMSCl or TBSCl (1.2 
equiv), -78 °C-0 °C, 2.5 h, 88%; b) 1.TiCl4, CH2Cl2, -78 °C, 4 h; 2. TBAF, THF, r. t., 5 min, 63%; c) 
(CH3) 2C(OCH3) 2, DMF, p-TsOH, 2 h, 86%. 
 

The synthetic route of this model reaction reported here makes available side chains 
of brassinolide 1 and dolicholide 3 that may be of interest for structure-activity studies of 
this group of steroids.  The work on the addition of α-silyloxy ketone 6 with the 
steroidal-aldehyde is in progress. 
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